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Introduction

Consider a Continuous-time Markov chain (CTMC)

Event of interest:
From a given initial state, reach some target state(s) “on time”

“On time” may mean:
(i) before some time bound τ
(ii) after some time bound τ

τ is rarity parameter:

P(event) ↓ 0 as τ ↓ 0 resp. τ →∞

Our focus: case (ii)
Goal: estimate this probability using Importance Sampling (IS).



Motivation

I Model checking stochastic systems: P(failure) below
threshold?

I Often large state spaces: numerical techniques not
applicable.

I Solution: statistical model checking (=simulation)
I When ‘failure’ is rare:



Motivation

I Model checking stochastic systems: P(failure) below
threshold?

I Often large state spaces: numerical techniques not
applicable.

I Solution: statistical model checking (=simulation)
I When ‘failure’ is rare: we’re in business!

But why focus on reaching target state after some (large) time
bound?

I In Markov reward model ‘failure’ can e.g. mean ‘collect too
much reward/cost before absorption’

I This event is equivalent with ‘absorption after sufficiently
large time’ in a related CTMC.



Single path

I We study a single path, i.e. pure birth process

. . .
q1 q2 qn−1 qn

Rates qj are general (need not be different)
I Interesting on its own: sum of i.i.d. r.v.’s grows large.

(but here n is fixed)
I Also needed for two-step approach in general CTMC:

I First select appropriate paths
(How? Open question...)

I Then consider each path separately



Model and goal

I We consider a pure birth process on {1, . . . ,n + 1}
I Initial state is 1, target state is n + 1.
I Sojourn times are Tj , j = 1, . . . ,n
I Tj are independent, densitiy fj(t) = qjeqj t

I T =
∑n

j=1 Tj

. . .
q1 q2 qn−1 qn

Interest: estimate P(T > τ) for large τ , using IS
How to find a good change of measure?

I Time-dependent, forcing T to meet the time bound? No...
I Replace densities by approximations of conditional

densities, given T > τ



Monte Carlo / Importance sampling
I Monte Carlo estimation, N simulation runs,

tij is realized sojourn time in state j during run i
I Standard MC estimator for P(T > τ):

(tij sampled using fj(t))

p̂ =
1
N

N∑
i=1

1∑
j tij>τ ,

I IS estimator for P(T > τ):
(tij sampled using f ∗j (t))

p̂∗ =
1
N

N∑
i=1

n∏
j=1

fj(tij)
f ∗j (tij)

1∑
j tij>τ ,

I If f ∗j (t) equals fj(t |T > τ): zero variance
Analyze conditional behavior of Tj , given T > τ



Conditional behavior of Tj , given T < τ

First consider case (i) for comparison

I Observation:
For T to be small, all Tj need to be small

I Outcome:

As τ ↓ 0, ‘burden’ of small T is shared proportionally by all Tj



Conditional behavior of Tj , given T < τ

First consider case (i) for comparison

I Observation:
For T to be small, all Tj need to be small

I Outcome:

As τ ↓ 0, ‘burden’ of small T is shared equally by all Tj

(in fact, Tj are jointly uniform on ‘triangle’
∑

j Tj ≤ τ )



Conclusion for case (i)

I Replace conditional density fj(t |T < τ) of Tj by

n
τ

(
1− t

τ

)n−1

, 0 < t < τ,

for all j = 1, . . . ,n
I E(Tj |T < τ) ∼ τ/(n + 1), so E(T |T < τ) ∼ n

n+1τ

I Also works for non-exponential densities fj(t)



Conditional behavior of Tj , given T > τ

Back to our focus, case (ii)

I Observation:
For T to be large, not all Tj need to be large!

I Outcome:

As τ →∞, ‘burden’ of large T is shared proportionally by all Tj



Conditional behavior of Tj , given T > τ

Back to our focus, case (ii)

I Observation:
For T to be large, not all Tj need to be large!

I Outcome:

As τ →∞, ‘burden’ of large T is shared disproportionally by Tj



Conditional analysis
I In general,

P(T1 > t |T > τ) =

∫ ∞
t

f1(t1)
P (T > τ)

P (T − T1 > τ − t1)dt1

hence

f1(t |T > τ) =


f1(t)

P (T > τ)
P(T − T1 > τ − t) if t < τ,

f1(t)
P (T > τ)

otherwise.

I For n = 2,

f1(t |T > τ) =


q1e−(q1−q2)t

q1
q1−q2

+ q2
q2−q1

e−(q1−q2)τ
if t < τ,

q1e−q1t

q1
q1−q2

e−q2τ + q2
q2−q1

e−q1τ
otherwise.



Conditional analysis, n = 2
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Conditional analysis, n = 2
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Exponential rate q1 for t > τ ; q1 − q2 for t < τ .



Expected share of the burden, n = 2

E(T1|T > τ) ∼


τ if q1 < q2

τ/2 if q1 = q2

(q2 − q1)
−1 if q1 > q2,
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Conditional analysis, n > 2

Insights for n = 2 remain valid for n > 2. Let

β1 = min{qj} (slowest rate)
r1 = #j with qj = β1 (# of slowest states)
β2 = min{qj : qj 6= β1} (second-slowest rate)

Then, for τ large, conditional sojourn time distribution of state j
depends on qj , and if qj = β1 also on r1:

I qj > β1: ∼ exp(qj − β1)

I qj = β1, r = 1: ∼ exp(β1) for t > τ , ∼ exp(β2 − β1) for t < τ

I qj = β1, r > 1: ∼ exp(β1) for t > τ , polynomial for t < τ



Conclusion for case (ii)

I Replace conditional density fj(t |T > τ) of Tj by

f ∗j (t) =


(qj − β1) · e−(qj−β1)·t if qj > β1

f (n=2)
1 (t |T > τ)

∣∣∣
(q1,q2)=(β1,β2)

if qj = β1, r1 = 1

r1/τ · e−r1/τ ·t if qj = β1, r1 > 1



Results

I 106 simulation runs
I Standard Monte Carlo (MC) estimator p̂ versus
I Importance Sampling (IS) estimator p̂∗

I Compare r.e. = relative error×1.96 (relative half-width of
estimated 95% Conf. Int.)

n = 2,q1 < q2:

τ p̂ MC-r.e. p̂∗ IS-r.e. true
5 2.52E-4 0.1235 2.417E-4 0.0047 2.417E-4
7 8.0E-6 0.6929 4.71E-6 0.0054 4.736E-6
9 0 — 8.947E-8 0.0060 8.93E-8

100 0 — 8.3E-89 0.0078 8.3E-89

Bounded relative error (?)



Results

I 106 simulation runs
I Standard Monte Carlo (MC) estimator p̂ versus
I Importance Sampling (IS) estimator p̂∗

I Compare r.e. = relative error×1.96 (relative half-width of
estimated 95% Conf. Int.)

n = 2,q1 = q2:

τ p̂ MC-r.e. p̂∗ IS-r.e. true
5 2.03E-4 0.1375 2.011E-4 0.0058 2.004E-4
7 3.0E-6 1.1316 3.372E-6 0.0070 3.363E-6

100 0 — 6.29E-94 0.0279 6.3E-94

(bit) less accurate, due to f ∗1 (t) 6≈ f1(t |T > τ) for t < τ (?)



Results

I 106 simulation runs
I Standard Monte Carlo (MC) estimator p̂ versus
I Importance Sampling (IS) estimator p̂∗

I Compare r.e. = relative error×1.96 (relative half-width of
estimated 95% Conf. Int.)

n = 50,qi = d i+1
2 e, i = 1, . . . ,50:

τ p̂ MC-r.e. p̂∗ IS-r.e. true
12 2.092E-2 0.0134 2.097E-2 0.0051 —
20 1.4E-5 0.5238 1.727E-5 0.0070 —

100 0 — 2.19E-39 0.0180 —



Conclusions

I Fast simulation for Slow paths is interesting (reaching
target state after some large time bound)

I Importance Sampling helps...
I ... but not by exponential tilting
I Burden of reaching large time bound is (almost) only for

slowest state(s)

Future work:
I Prove asymptotics for conditional distributions
I Investigate bounded relative error (?)
I Extend to general CTMC, i.e. sample appropriate paths



Thanks you for your attention!
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